

磷矿石化学成分分析标准物质研制
中国地质调查局武汉地质调查中心, 湖北 武汉 430205 |
Preparation of Phosphate Ore Reference Materials for Chemical Composition Analysis
Wuhan Center of Geological Survey, China Geological Survey, Wuhan 430205, China |
开元棋牌的娱乐平台_开元棋牌网站送彩金_开元棋牌下载送金币:磷矿的开发与综合利用不仅需要分析磷等主要元素,也需要准确地测定稀土元素和微量元素。分析测试过程需要含量适中、定值组分全的磷矿石标准物质进行质量监控,国内外现有的磷矿石标准物质无论是从定值指标还是含量梯度范围等方面均无法满足此需求。本文研制了4个不同类型磷矿石成分分析标准物质。样品采集自河北张家口钒山磷矿、贵州织金新华磷矿、云南昆阳磷矿、湖北神农架火炼坡磷矿4个典型矿区,其中张家口钒山磷矿和织金新华磷矿为含稀土的磷矿。检验结果表明样品的均匀性、稳定性良好;通过11家实验室协作定值,定值元素包括造岩主量元素、稀土元素和痕量元素共37项,其中3个组分为参考值,其余均给出标准值和不确定度。4个磷矿石标准物质形成了一个从边界品位、工业品位到磷精矿较为完整的含量系列,P2O5的含量分别为10.57%、18.91%、27.78%、39.40%,稀土元素总量分别为0.16%、0.11%、0.032%、0.0083%,可满足磷矿勘查、评价和综合利用开发中对标准物质的需求。
Preparation of Phosphate Ore Reference Materials for Chemical Composition Analysis
ABSTRACT?For the development and comprehensive utilization of phosphate ore it is not only necessary to analyze the main elements such as phosphorus, but it is also necessary to determine accurately the rare earth, trace and other elements. Phosphate Ore Reference Materials (PORMs) with numbers of components and suitable contents can be used for quality control during analysis. However, available PORMs in China and abroad do no meet the requirements in terms of the element contents and the content range. Four different types of PORMs have been developed and are described in this study. The samples of phosphate ores were collected from the Zhangjiakou Fanshan phosphate mine in Hebei province, Xinhua phosphate mine in Zhijin of Guizhou Province, Kunyang phosphate mine in Yunnan Province, and Huolian phosphate mine in Shennongjia of Hubei Province. Zhangjiakou Fanshan phosphate mine and Xinhua phosphate mine are rich in rare earth elements (REEs). Four samples were homogeneous and stable. The results from 11 laboratories were combined to confirm certified values and uncertainty of 37 components, which include major elements, REEs, and trace elements. Three components were taken as reference values and the rest were characterized as certified values. The four PORMs cover a complete content series from cut-off grade, production-grade, to phosphate concentrate with P2O5 contents of 10.57%, 18.91%, 27.78% and 39.40%, respectively, and the total REEs contents of 0.16%, 0.11%, 0.032% and 0.0083%, respectively. The developed PORMs meet the requirements for exploration, evaluation, and comprehensive utilization of phosphate ores.

本文参考文献
[1] |
温婧. 中国磷矿资源类型和潜力分析[D]. 北京: 中国地质大学(北京), 2011. Wen J.The Type and Potential Analysis of Phosphorite Resources in China[D].Beijing:China University of Geosciences (Beijing), 2011. |
[2] |
Steiner G, Geissler B, Watson I, et al. Efficiency deve-lopments in phosphate rock mining over the last three decades[J].Resources, Conservation and Recycling,?2015,?105:?235-245. doi: 10.1016/j.resconrec.2015.10.004 |
[3] |
张苏江, 夏浩东, 唐文龙, 等. 中国磷矿资源现状分析及可持续发展建议[J]. 中国矿业, 2014,?23(2):?8-13. Zhang S J, Xia H D, Tang W L, et al. Current status and sustainable development of phosphorite resources in China[J]. China Mining Magazine,?2014,?23(2):?8-13. |
[4] |
韩豫川,夏学惠,肖荣阁. 中国磷矿床[M] . 北京: 地质出版社, 2012 Han Y C,Xia X H,Xiao R G. Chinese Phosphate Deposit[M] . Beijing: Geological Publishing House, 2012 |
[5] |
靳利飞, 周海东. 中国磷矿资源开发利用形势分析及可持续发展对策研究[J]. 中国人口·资源与环境, 2016,?26(5):?417-420. Jin L F, Zhou H D. Research on exploitation and utilization and sustainable development of phosphate resources in China[J]. China Population, Resources and Environment,?2016,?26(5):?417-420. |
[6] |
鄢正华. 我国磷矿资源开发利用综述[J]. 矿冶, 2011,?20(3):?21-25. Yan Z H. Review of development and utilization of phosphate resources in China[J]. Mining Metallugry,?2011,?20(3):?21-25. |
[7] |
李维, 高辉, 罗英杰, 等. 国内外磷矿资源利用现状、趋势分析及对策建议[J]. 中国矿业, 2015,?24(6):?6-10. Li W, Gao H, Luo Y J, et al. Status, trends and suggestions of phosphorus ore resources at home and abroad[J]. China Mining Magazine,?2015,?24(6):?6-10. |
[8] |
王毅民, 王晓红, 高玉淑, 等. 中国地质标准物质制备技术与方法研究进展[J]. 地质通报, 2010,?29(7):?1090-1104. Wang Y M, Wang X H, Gao Y S, et al. Advances in preparing techniques for geochemical reference materials in China[J]. Geological Bulletin of China,?2010,?29(7):?1090-1104. |
[9] |
Jochum K P, Weis U, Schwager B, et al. Reference values following ISO guidelines for frequently requested rock reference materials[J].Geostandards and Geoanalystical Research,?2016,?40(3):?333-350. doi: 10.1111/ggr.2016.40.issue-3 |
[10] |
Weis U, Schwager B, Nohl U, et al. Geostandards and geoanalystical research bibliographic review 2015[J].Geostandards and Geoanalystical Research,?2016,?40(4):?599-601. doi: 10.1111/ggr.2016.40.issue-4 |
[11] |
张苏江, 易锦俊, 孔令湖, 等. 中国磷矿资源现状及磷矿国家级实物地质资料筛选[J]. 无机盐工业, 2016,?48(2):?1-5. Zhang S J, Yi J J, Kong L H, et al. Current status of phosphorite-ore resources in China and screening for national-class physical geological data of phopshorite[J]. Inorganic Chemicals Industry,?2016,?48(2):?1-5. |
[12] |
Zhang P. Comprehensive recovery and sustainable deve-lopment of phosphate resources[J].Procedia Engi-neering,?2014,?83:?37-51. doi: 10.1016/j.proeng.2014.09.010 |
[13] |
Ramos S J, Dinali G S, De Carvalho T S, et al. Rare earth elements in raw materials and products of the phosphate fertilizer industry in South America:Content, signature, and crystalline phases[J].Journal of Geochemical Exploration,?2016,?168:?177-186. doi: 10.1016/j.gexplo.2016.06.009 |
[14] |
冯安生, 曹飞, 吕振福, 等. 我国磷矿资源综合利用水平调查与评价[J]. 矿产保护与利用, 2017,?(2):?13-17. Feng A S, Cao F, Lü Z F, et al. Investigation and evaluation of comprehensive utilization level of phosphate ore resources in China[J]. Conservation and Utilization of Mineral Resources,?2017,?(2):?13-17. |
[15] |
田侠. 我国磷矿资源综合评价与政策建议[J]. 中国国土资源经济, 2016,?29(8):?29-31. Tian X. Comprehensive evaluation and policy recommenda-tion on mining resource of phosphorus in China[J]. Natural Resource Economics of China,?2016,?29(8):?29-31. |
[16] |
Botha A, Ellison S, Linsinger T, et al. Outline for the re-vision of ISO Guide 35[J].Accreditation and Quality Assurance,?2013,?18:?115-118. doi: 10.1007/s00769-012-0940-0 |
[17] |
宋丽华, 郝原芳, 杨柳, 等. 地质标准物质的研制方法[J]. 地质与资源,?2013,?22(5):?419-421. Song L H, Hao Y F, Yang L, et al. Preparation on method of geochemical reference materials[J].Geology and Resources,?2013,?22(5):?419-421. |
[18] |
袁建, 王亚平, 许春雪, 等. 湖泊沉积物中磷形态标准质研制[J]. 岩矿测试, 2014,?33(6):?857-862. Yuan J, Wang Y P, Xu C X, et al. Preparation of phosphorus speciation reference materials from lake sediments[J]. Rock and Mineral Analysis,?2014,?33(6):?857-862. |
[19] |
中国实验室国家认可委员会. 化学分析中不确定度的评估指南[M] . 北京: 中国计量出版社, 2002 China National Accreditation Board for Laboratories . Guide to Uncertainty Evaluation in Chemistry Analysis[M] . Beijing: Chinese Metrology Press, 2002 |
[20] |
杨理勤. 常量金标准物质标准值的不确定度评定方法[J]. 黄金,?2015,?36(9):?80-82. doi: 10.11792/hj20150919 Yang L Q. Discussion about the assessment method of the uncertainty degree of certified values from ore gold reference materials[J].Gold,?2015,?36(9):?80-82. doi: 10.11792/hj20150919 |
[21] |
郑存江. 地质标准物质不确定度评估方法初探[J]. 岩矿测试, 2005,?24(4):?284-286. Zheng C J. Primary investigation for evaluation of uncertainty of geological reference materials[J]. Rock and Mineral Analysis,?2005,?24(4):?284-286. |
[22] |
刘瑱, 马玲, 时晓露, 等. 石英岩化学成分分析标准物质研制[J]. 岩矿测试, 2014,?33(6):?849-856. Liu Z, Ma L, Shi X L, et al. Preparation of quartzite reference materials for chemical composition analysis[J]. Rock and Mineral Analysis,?2014,?33(6):?849-856. |
相似文献(共20条)
[1] |
赵晓亮, 李志伟, 王烨, 王君玉, 仲伟路, 陈砚. 铌钽精矿标准物质研制. 岩矿测试, 2018, 37(6): 687-694. doi: 10.15898/j.cnki.11-2131/td.201711230185 |
[2] |
余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150. |
[3] |
黄仁忠. 硫脲介质-石墨炉原子吸收光谱法测定化探样品中微量银. 岩矿测试, 2008, 27(3): 237-238. |
[4] |
曾美云, 陈燕波, 刘金, 王迪民. 高磷铁矿石成分分析标准物质研制. 岩矿测试, 2019, 38(2): 212-221. doi: 10.15898/j.cnki.11-2131/td.201808150094 |
[5] |
白亚之, 朱爱美, 崔菁菁, 施美娟, 高晶晶, 张俊. 中国近海沉积物氮和有机碳标准物质的研制. 岩矿测试, 2014, 33(1): 74-80. |
[6] |
李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122. |
[7] |
林立, 周谙非, 张曼玲, 田艳玲, 杨彦丽. 微波消解-电感耦合等离子体发射光谱法分析食品中的总硼. 岩矿测试, 2008, 27(1): 21-24. |
[8] |
林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152. |
[9] |
徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76. |
[10] |
李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200. |
[11] |
洪飞, 刘耀华, 吕振生, 赵伟, 王卿, 张英明. 钛铁矿化学成分标准物质研制. 岩矿测试, 2014, 33(1): 63-73. |
[12] |
刘瑱, 马玲, 时晓露, 查立新. 石英岩化学成分分析标准物质研制. 岩矿测试, 2014, 33(6): 849-856. |
[13] |
程志中, 刘妹, 张勤, 顾铁新, 黄宏库. 水系沉积物标准物质研制. 岩矿测试, 2011, 30(6): 714-722. |
[14] |
蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126. |
[15] | |
[16] | |
[17] |
程志中, 顾铁新, 范永贵, 黄宏库, 刘 妹, 鄢卫东, 鄢明才. 九个铁矿石标准物质研制. 岩矿测试, 2010, 29(3): 305-308. |
[18] |
程志中, 刘妹, 黄宏库, 顾铁新, 鄢卫东. 镍矿石和镍精矿标准物质研制. 岩矿测试, 2013, 32(4): 600-607. |
[19] |
奥地利安东帕有限公司. 密闭微波消解-ICPOES法测定钢铁样品中硅. 岩矿测试, 2008, 27(2): I-I. |
[20] |
顾勇冰, 张春牛, 郑云法. 1-偶氮苯-3-(5-氯-2-吡啶)-三氮烯的合成及其与镍的显色反应. 岩矿测试, 2005, (2): 112-114. |
计量
- PDF下载量(33)
- 文章访问量(594)
- HTML全文浏览量(174)
- 被引次数(0)