

矽线石成分分析标准物质研制
1.? | 国家地质实验测试中心, 北京 100037 |
2.? | 黑龙江省地质矿产测试应用研究所, 黑龙江 哈尔滨 150036 |
Preparation of Certified Reference Materials of Sillimanite for Chemical Composition Analysis
1.? | National Research Center for Geoanalysis, Beijing 100037, China |
2.? | Institute of Geology and Mineral Resources Testing & Application of Heilongjiang Province, Harbin 150036, China |
开元棋牌的娱乐平台_开元棋牌网站送彩金_开元棋牌下载送金币:随着矽线石应用领域的逐步拓展,英国、南非和日本等国家已研制了4种矽线石标准物质,而我国仅有一种矽线石国家二级标准物质,无论从组分的浓度梯度范围还是定值指标等方面,均难以满足我国研究需求。本文针对我国矽线石的分布情况,在黑龙江林口县和河南内乡县采集典型矽线石原矿2种,在黑龙江林口县采集矽线石精矿1种,按照国家一级标准物质研制标准和规范要求,研制了3种矽线石成分分析国家一级标准物质(批准编号为GBW07843、GBW07844、GBW07845)。均匀性检验结果表明,除个别指标(Y-1的TFe2O3、Cu和J-1的MnO等)外,3种标准物质检测指标的F值均小于临界值F0.05(24,25)=1.96,组内和组间无明显差异;Y-1的TFe2O3、Cu和J-1的MnO等指标的组内和组间差异主要来源于分析方法误差,由此表明此批标准物质均匀性良好。在14个月考察期内,3种标准物质计算得到的拟合直线斜率b1均不显着,表明3种标准物质有较好的稳定性。经我国10家实验室使用多种分析方法对矿石中的主量元素、痕量元素和矽线石含量(硅铝,SAl2O3)等共计39种组分联合定值,各组分的相对扩展不确定度处于0.60%~29.9%区间,3种矽线石标准物质主量成分Al2O3的含量分别为25.85%、28.16%和55.06%。该系列矽线石标准物质可满足地质、环境等研究领域相关样品分析质量监控工作的需求。
Preparation of Certified Reference Materials of Sillimanite for Chemical Composition Analysis
ABSTRACT?With an increasing utilization of sillimanite, some reference materials of sillimanite for chemical composition have been developed in countries such as the UK, South Africa and Japan. In China, there is only one national secondary standard material for chemical compositon of sillimanite. It is difficult to meet the research needs of the country in terms of the concentration gradient range and the value index. For this study, two sillimanite ores were collected from Linkou county in Heilongjiang and Leijiang county in Henan, and one sillimanite concentrate was collected from Linkou county in Heilongjiang. According to national primary reference materials specifications, 3 sillimanite CRMs have been developed and approved as national standard reference materials (GBW07843, GBW07844, GBW07845). For the homogeneity test, the calculated F values in 3 sillimanite CRMs obtained by analysis of variance (ANOVA) were less than the critical F values at the 95% confidence level, with the exception of TFe2O3 and Cu in Y-1, and MnO in J-1, indicating no obvious differences between units and within units. The differences of TFe2O3 and Cu in Y-1 and MnO in J-1 between units and within units resulted from the error in the analytical methods. The results showed that 3 sillimanite CRMs had good homogeneity. The calculated test statistic b1 of 3 sillimanite CRMs during the 14-month observation period was statistically insignificant, indicating that 3 sillimanite CRMs were stable. 10 qualified laboratories were selected to give certified values and uncertainties of 39 components, including major elements, trace elements and sillimanite phases in ores. The relative expanded uncertainties of 39 components range from 0.60% to 29.9%. The content of Al2O3 in sillimanite reference materials is 25.85%, 28.16%, 55.06% for GBW07843, GBW07844, and GBW07845, respectively. 3 sillimanite CRMs meet the monitoring requirements of chemical composition analysis for sillimanite samples in geology and environment fields.

本文参考文献
[1] |
叶先贤, 刘平, 陈敬中, 等. 矽线石研究及应用综述[J]. 地质科技情报, 1998,?17(1):?26-32. Ye X X, Liu P, Chen J Z, et al. Research and application of sillimanite:A review[J]. Geological Science and Technology Information,?1998,?17(1):?26-32. |
[2] |
Lepezin G G, Kargopolov S A, Zhirakovskii V Y, et al. Sillimanite group minerals:A new promising raw materials for the Russian aluminum industry[J]. Russian Geology and Geophysics,?2010,?15:?1247-1256. |
[3] |
Goergen E T, Whitney D L, Zimmerman M E, et al. Deformation-induced polymorphic transformation:Experimental deformation of kyanite, andalusite, and sillimanite[J]. Tectonophysics,?2008,?454(1):?23-35. |
[4] |
Gaft M, Strek W, Nagli L, et al. Laser-induced time-resolved luminescence of natural sillimanite Al2SiO5 and synthetic Al2SiO5 activated by chromium[J].Journal of Luminescenece,?2012,?132:?2855-2862. doi: 10.1016/j.jlumin.2012.04.045 |
[5] |
李珍, 许东明, 阳雅丽, 等. 硅线石及其尾矿利用研究[J]. 中国陶瓷, 2016,?52(5):?1-5. Li Z, Xu D M, Yang Y L, et al. Research on sillimanite and application of its tailings[J]. China Ceramics,?2016,?52(5):?1-5. |
[6] |
刘世坚, 于立波, 王立宇, 等. 硅线石制品的研制与应用概况[J]. 黑龙江冶金, 1999,?(1):?41-44. Liu S J, Yu L B, Wang L Y, et al. An overviews of development and utilization of sillimanite product[J]. Heilongjiang Metallurgy,?1999,?(1):?41-44. |
[7] |
姜云, 杨秀红, 张俊才, 等. 用鸡西硅线石研制高铝硅线石——碳砖[J]. 黑龙江矿业学院学报, 1999,?9(2):?46-49. Jiang Y, Yang X H, Zhang J C, et al. Developing rich-aluminium sillimanite-carbon bricks using Jixi-produced sillimanite[J]. Journal of Heilongjiang Mining Institute,?1999,?9(2):?46-49. |
[8] |
薛松柏, 张成城, 李春范, 等. 一种质优价廉的焊接材料原料——硅线石[J]. 焊接, 1999,?(1):?10-12. Xue S B, Zhang C C, Li C F, et al. Sillimanite-A new high quality, low cost mineral for welding consumable production[J]. Welding,?1999,?(1):?10-12. |
[9] |
雷东升, 许时. 硅线石矿物的应用和选矿现状[J]. 国外金属矿选矿, 1995,?(4):?12-15. Lei D S, Xu S. Utilization and dressing existing conditions of sillimanite minerals[J]. Abroad Metallic Ore Dressing,?1995,?(4):?12-15. |
[10] |
张巍. 硅线石的综合利用进展[J]. 矿业工程研究, 2015,?30(2):?55-69. Zhang W. Progress on utilization of sillimanite[J]. Mineral Engineering Research,?2015,?30(2):?55-69. |
[11] |
Weis U, Schwager B, Nohl U, et al. Geostandards and geoannlytical research bibliographic review 2015[J].Geostandards and Geoanalytical Research,?2016,?40(4):?599-601. doi: 10.1111/ggr.2016.40.issue-4 |
[12] |
Jochum K P, Weis U, Schwager B, et al. Reference values following ISO guidelines for frequently requested rock reference materials[J].Geostandards and Geoanalytical Research,?2016,?40(3):?333-350. doi: 10.1111/ggr.2016.40.issue-3 |
[13] |
The international database for certified reference materials[DB/OL].http://www.comar.bam.de/en/. |
[14] |
Edward J K. The preparation and certification of fourteen south african silicate rocks for use as reference materials[J]. Geostandards & Geoanalytical Research,?1993,?17(17):?137-158. |
[15] |
Francoise C, Christian P. Major, minor and rare-earth element determinations in 25 rock standards by ICP-atomic emission spectrometry[J].Geostandards and Geoanalytical Research,?1994,?18(1):?123-138. doi: 10.1111/j.1751-908X.1994.tb00511.x |
[16] |
Pranab K, Tarafder , Raghbendra T, et al. An optimised 1, 10-phenanthroline method for the determination of ferrous and ferric oxides in silicate rocks, soils and minerals[J]. Geostandards and Geoanalytical Research,?2013,?37(6):?155-168. |
[17] |
Suarez-Fermandez G P, Vega J M G, Fuertes A B, et al. Analysis of major, minor and trace elements in coal by radioisotope X-ray fluorescence spectrometry[J].Fuel,?2001,?80(2):?255-261. doi: 10.1016/S0016-2361(00)00088-0 |
[18] |
赵平, 刘新海. 高铁硅线石矿选矿试验研究[J]. 非金属矿, 2008,?31(3):?22-24. Zhao P, Liu X H. Experimental study on beneficiation of high iron-bearing sillimanite[J]. Non-Metallic Mines,?2008,?31(3):?22-24. |
[19] |
袁建, 王亚平, 许春雪, 等. 湖泊沉积物中磷形态标准物质研制[J]. 岩矿测试, 2014,?33(6):?857-862. Yuan J, Wang Y P, Xu C X, et al. Preparation of phosphorus speciation reference materials from lake sediments[J]. Rock and Mineral Analysis,?2014,?33(6):?857-862. |
[20] |
田芹, 吴淑琪, 佟玲, 等. 中国典型类型土壤中有机氯农药和多氯联苯成分分析标准物质的研制[J]. 岩矿测试, 2015,?34(2):?238-244. Tian Q, Wu S Q, Tong L, et al. Preparation of certified reference materials of organochlorine pesticides and polychlorinated biphenyls in Chinese typical soils[J]. Rock and Mineral Analysis,?2015,?34(2):?238-244. |
[21] |
刘瑱, 马玲, 时晓露, 等. 石英岩化学成分分析标准物质研制[J]. 岩矿测试, 2014,?33(6):?849-856. Liu Z, Ma L, Shi X L, et al. Preparation of quartzite reference materials for chemical composition analysis[J]. Rock and Mineral Analysis,?2014,?33(6):?849-856. |
[22] |
洪飞, 刘耀华, 吕振生, 等. 钛铁矿化学成分标准物质研制[J]. 岩矿测试, 2014,?33(1):?67-73. Hong F, Liu Y H, Lü Z S, et al. Certified reference materials preparation of ilmenite chemical composition[J]. Rock and Mineral Analysis,?2014,?33(1):?67-73. |
相似文献(共20条)
[1] |
秦颍, 董亚巍, 魏国锋, 韩楚文, 曲毅, 王昌燧. 大冶李德贵冶炼遗址矿冶遗物分析. 岩矿测试, 2008, 27(2): 99-102. |
[2] |
王昌燧, 毛振伟, 朱铁权, 何伟, 贾兴和, 张茂林, 黄宇营. 斯里兰卡曼泰遗址出土青花瓷的化学成分分析及产地初探. 岩矿测试, 2008, 27(1): 37-40. |
[3] |
林立, 周谙非, 张曼玲, 田艳玲, 杨彦丽. 微波消解-电感耦合等离子体发射光谱法分析食品中的总硼. 岩矿测试, 2008, 27(1): 21-24. |
[4] |
李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122. |
[5] |
林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152. |
[6] |
徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76. |
[7] | |
[8] |
余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150. |
[9] |
黄仁忠. 硫脲介质-石墨炉原子吸收光谱法测定化探样品中微量银. 岩矿测试, 2008, 27(3): 237-238. |
[10] |
杨理勤, 陈占生, 谢璐, 李玄辉, 冯亮, 艾晓军, 汤宇磊. 卡林型金矿金砷成分分析标准物质研制. 岩矿测试, 2018, 37(2): 209-216. doi: 10.15898/j.cnki.11-2131/td.201711210183 |
[11] | |
[12] |
李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200. |
[13] | |
[14] |
周红, 王峰, 余侃萍, 王凯, 郭茂生, 叶青. 金矿石化学物相分析标准物质的研制. 岩矿测试, 2006, 25(3): 263-269. |
[15] |
曾美云, 刘金, 邵鑫, 邹棣华. 磷矿石化学成分分析标准物质研制. 岩矿测试, 2017, 36(6): 633-640. doi: 10.15898/j.cnki.11-2131/td.201705170082 |
[16] | |
[17] |
蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126. |
[18] |
程志中, 刘妹, 张勤, 顾铁新, 黄宏库. 水系沉积物标准物质研制. 岩矿测试, 2011, 30(6): 714-722. |
[19] |
卜维, 刘妹, 鄢明才, 鄢卫东, 史长义, 顾铁新. 生物成分系列标准物质的研制. 岩矿测试, 2006, 25(2): 159-172. |
[20] |
赵晓亮, 李志伟, 王烨, 王君玉, 仲伟路, 陈砚. 铌钽精矿标准物质研制. 岩矿测试, 2018, 37(6): 687-694. doi: 10.15898/j.cnki.11-2131/td.201711230185 |
计量
- PDF下载量(37)
- 文章访问量(1179)
- HTML全文浏览量(415)
- 被引次数(0)